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Abstract—In the current paper. the stress distribution in adhesive-bonded tubular lap joints sub-
jected to torsion is analyzed. The two adherends may have different thicknesses and consist of
different materials and the adhesive layer may be flexible or inflexible. The analysis is based on the
elasticity theory in conjunction with the variational principle of complementary energy. By means
of the present approach, closed form solutions are obtained and the stress-free end conditions of
the joint which may have significant effect on the stress inteasities is satisfied. Special attention is
given to the high stress intensities in the end zones of the joint, and a stress concentration factor is
deduced.

INTRODUCTION

With the development of high-strength adhesive materials and with the progress in tech-
niques of adhesive bonding, various kinds of adhesive-bonded joints are now being used in
the manufacturing of light structures (Kinloch, 1987). Because stress concentration often
occurs in the edge zones of the adhesive layer of a joint (Goland and Reissner, 1944 ; Chen
and Cheng, 1983, 1990, 1991), a detailed analysis of the stress distribution around the joint
region, especially in the adhesive layer of these joints, is needed for application and research.

The problem of torsional stresses in tubular lap joints was first investigated by
Volkersen (1965a). In Volkersen's analysis (1965b), the two tubular adherends of the joint
are treated by Mechanics of Materials approach for which the circumferential shear stress
1,4 18 disregarded and the adhesive layer is treated as a kind of “shearing spring’ acting
between the two adherends. Following Volkersen’s work (1965¢), Adams and Peppiatt
(1977a) improved the analysis by taking the thickness of the adhesive layer into account,
and Caon (1982) extended Volkersen'’s approach to tubular lap joints with adherends of
composite materials. Attention, however, should be paid to the limitation of Volkersen's
method (1965d), for in such an approach, where the existence of the circumferential shear
stress 1,y (cf. Fig. 1) in the two tubular adherends is disregarded, we may reasonably expect
that some significant deviations in stress intensity could result for those joint combinations
in which the adhesive layer is relatively thin and *“stiff ™ (compared with the adherends).

The current work presents a more accurate approach by taking the circumferential
shear stresses in the two tubular adherends into consideration. Through the use of the
variational principle of complementary energy, a general formula for the stress distribution
in the adhesive layer, which is suitable for arbitrary adherend-adhesive combinations is
derived. The formula suggests that Volkersen-Adams' (1965¢, 1977b) prediction for the
stress concentration in the adhesive layer of a tubular lap joint under torsion is in fact more
serious than it actually is, especially for those joint combinations where the adhesive layer
is thin and “stifl”* when compared with the adherends.
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Fig. |. Adhesive-bonded tubular lap.

845



346 D. CHEN and S§. CHENG
FORMULATION OF THE PROBLEM

Figure 1 is a schematic diagram of a tubular lap joint subjected to torsion. The two
tubular adherends of the joint may have unequal shear moduli G, (inner adherend) and G.
(outer adherend) and the shear modulus for the adhesive layer is G,. Let the inner and
outer radii for the inner adherend be R, and R, and for the outer adherend. R, and R.
The thickness of the adhesive layer is then r = R, ~ R,. In Fig. 1. the two applied torques.
equal and opposite, acting on the far ends of the two adherends respectively. are represented
by T. and / is the length of the lap region. As mentioned above. the main concern is the
stress distribution in the adhesive layer, especially the stress intensity in the end zones of
the adhesive layer.

To solve the problem the jointed portion of the tubular lap joint is separated from the
joint as shown in Fig. 2. To fit the geometry of the joint. a circular cylindrical coordinate
system {r.#.2) is chosen for describing the stresses in the joint block. The left end face of
the block is identified by - = 0 (Fig. 2).

DESCRIPTION OF STRESSES IN THE JOINT

For the present problem, in view of the symmetric property in geometry and loading,
we may assume that there are only two stress components in the f-axis, i.¢. ,,(r.2) and
ta.(r. ) existing in the joint (Timoshenko and Goodicr, 1951) and the two stress components
are related by the equilibrium equation

d a
=5 7P+ T =0 (t)
p-op g
in which non-dimensional coordinates p = /R, { = z/R are introduced for simplifying the
forthcoming operations and conclusions. We note that when any once of the two stress
components in eqn (1) is known, the other can be casily dernived with proper integration
procedure.

Let (210 Tuei s (Toaz, Toer) and (1,94, Te. 1) be the stress components in the inner adherend,
the outer adherend and the adhesive layer of the jointed portion, respectively. As the basis
of the analysis 1o be developed, a general pattern of stress distribution which satisfies eqn
(1), conditions for stress continuity across the bonding surfaces p =p, = R/R.
p = pr= Ry/R as well as those boundary stress conditions of the joint are constructed in
this section, It starts with two assumptions:

(1) The stress components t,.,, Ty., in the inner and outer adherends of the joint may
be considered varying linearly with the coordinate p (Fig. 2), 1.c.

)

Tor = pT2{0) (prsp <) (3)

(2)

x| =2

Ty = pry(() (00 SPEPpPo=

where 7,(5) and 7.(0) arc two unknown functions yet to be determined, and there
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Fig. 2. Distribution of shearing stress at - = Qand = = 1.
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will be two boundary conditions (at { = 0 and { = 4 = I/R) imposed on each of

them
2T
= ) = 4
rl(o) 7IR3 P?"'Pa‘ rl(/) 0 (a)
. 2r 1
T:(O) = 0' fz(t‘-) = m'—l —p; . (4b)

(2) The stress component 4.3 in the adhesive layer may be taken as vanishing, i.e.
=0 (p<p<pr) )

(and the free end conditions at { = 0, { = A for the adhesive layer are therefore
automatically satisfied).

These two assumption are quite similar to those adopted by Volkersen—Adams’ analysis
{1965f, 1977¢), but the crucial fcature of the present analysis lies in the further deduction
and consideration for the stress components 1,41, T,492. Which are neglected in Volkersen—
Adams’ analysis (1965g, 1977d).

From eqns (1), (2), (3) and also the traction-free conditions on the inner (p = p,) and
outer (p = ) surfaces of the joint, it is readily derived that in the inner and outer adherends,
the stress components 1,4, and 1,4, must be

PR
po—p \de
T = (“%},z’“‘> az-l (ro€pspy) (6)
F—p*\ dr
Ty = (”Z';z") '&‘;;2" (p2<psgl) )

respectively. Applying eqns (1) and (5) and taking into account the condition for stress
continuity across the bonding surface p = p, (i.e. 1,4, lo, = Tw3l,,)s the stress component 7,45
in the adhesive layer can also be deduced :

4 4
Po— dr
Ty = (_‘—)4;)2p|> ‘a‘cl (pr€p<p2) 8)

As for the condition of continuity of stress t,92/p; = 7,93/p; across the bonding surface
p = p2 we obtain from eqns (7) and (8)

(‘_“i’_) dr: _ (Pﬁ‘ﬂ) dr,
4p3 ) ¢ 4p; / d¢

which can be scen as a condition of constraint imposed on t, and t,. Through integration
and referring to the end conditions (4a), (4b), this constraint is equivalent to

4T () +anl) =1, &l

where
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X =pi—ps 2= l—pt, = o (10)

Thus, the stress distribution in the joint block may now be determined by only one of the
two unknown functions 7,, 7,.

GOVERNING EQUATION FOR STRESS DISTRIBUTION

To obtain further equations for the determination of t, {or t.). use has to be made of
the compatibility of deformation of the joint. and this can be done in a rational manner by
means of the vanational theorem of complementary energy (Washizu. 1968). There are three
distinct parts of the joint and the total complementary energy of the joint to be minimized

may be written as

U(rrH‘ rH:) = (/I +("YI+U} (ll)
and
R} i (o, , .
U, = E’I;T Jo b (v +70:)2mp dp d¢ (lla)
R\ i
U, = 2*(;: ) ) (f,:;i:'*'fe;::)zn/’ dp d¢ (11b)
R\ i "p-,
Uy=, - (t2 +1i.4)2rp dp dl (ltc)
...(I_‘ JU Jiy
After substituting expressions (2), (3). (5). (6). (7) and (8) for 7,4,..... Ty:y into (1) and
carrying out the integration with respect to p., it is found that
v =" 4 (‘“')2“3 J v, =R J[: (‘“3):“3 erd“
= Al o [dl, Us= o L 273 [dE,
| G_‘ . | dC 1T 8 2 206G, s & 6
R [* (dr,)z
Uy = - | A\ =, | d
3 G, J:) 3 & 5
and
R {* dt,)2 (dn)z . ,] y
U=-—— A +AN = +A4:1 =] +B,ti+B,13 |d (12)
G, 4[) [( I J)(ds "\ d¢ v :
in which
G| pl . N , 1 ,
A, = é‘j‘[g; (po"=p )+ Ig(/’ﬁ“[)f)‘*' 66(!’?"/)({)) )
1 (G
B, = 3(5) (PT"I’;).
G| | s 1, I ﬁ}
=2 (7 =+ (i D+ = (1=p9 |
Ay sz. D+ (3= D+ 5 (199
(G, s
B, = 3(0)(1 P2
l 2 - -2
A3=3'7(P(4)—PT)‘(/’1'—/’:") (13)
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are all non-dimensional coefficients. We note that in the integrals U,, U, and U,, the terms
with coefficients 4,, 4; and A4, represent the complementary energy due to 1,4, T,4; and
1,93, respectively (6,7, 8).

By using the constraint (9) to eliminate t, in the integrand of (12), we obtain

r_ir_&i ) d‘{ 2 Mz R
o= [{laara (] (@) [oen ()]0
—2Bﬂ(a2)r.+sz( )}dg. (14)

Then, carrying out the variation U = 0 under the given two end conditions (da), the
governing equation for t, which renders the total complementary energy U a minimum is
established ;

dl 2
[A +( )A,+A ] d; [81 (a—:) B;]n = ‘3’(a )ro (15)

SOLUTION

The general solution of eqn (15) may be written as
a ¥
—~ | B
(0‘2) : . To
a,
B, + Bz
oy

e (2

k= - it
N\
A,+(o—zi) A+ 4,

and C,, C, are two constants of integration which can be readily determined by two end
conditions (4a).

Calculation shows that for most cases of practical importance, k4 is generally much
greater than | (unless the joint is unusually “short™ { « R), so it is preferable to split the
general solution (16) into two parts, i.c.

() =C e +Cyet-04 (16)

in which

(A) for the left end zone of the joint (near { = 0)

u@)=Cie N ——g—r—

(18)
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(B) for the right end zone of the joint (near { = 1)

2, ¥
1) B,
x: To

=—~—~—~—:-~'a—(l—e”‘“‘3). (19)

We note that in solutions (18) and (19), the two end conditions (4a) have been taken into
account.

From eqns (8). (18) and (19), the shearing stresses in the two end zones of the adhesive
layer are finally obtained :

—e % (near{=0)

trf’.‘ = ai o (20)
-1 B,
k- waﬂz_w o

~s €749 (near { = 1).

DISCUSSION

We are mainly interested in 7,4; (20). From (20) and the previous analysis as well, it is
casily seen that:

(1) The maximum shearing stress in the adhesive layer always occurs at the two ends
of the joint ({ =0 and { = 4), and acts on the inner bonding surface (p = p,) of the
layer. More specifically, when B > (a,/x;)?B, happens, it is the left end ({ = 0) where the
maximum shearing stress appears and this maximum value is

k'B; To

trvllmux = : 3
2 4

o 4

B+ (—‘-) B,

3]

(20

and when B, < (2,/2,)° B., the maximum shearing stress occurs at the right end ({ = 4) and
this maximum value is

Tr@limax = 2 3
4p
B| + (il“) B2 ‘

(2) Expression (20) shows that the decaying exponent k (17) is precisely the index for
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Fig. 3. Distribution of t,¢; for { = 0.5R.

the influence which the adhesive layer may have on the degree of the end stress concentration
when the dimensions and elastic coefficients of the adherends of a joint are given.

(3) Examining the expression for k (17) it is seen that with the increase of the adhesive
modulus G, (13) and/or the decreasing of the thickness of the adhesive layer the value of &

0.0 0.2

Fig. 4. Distribution of 1,4, for / = R.
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Fig. 5. Distribution of r,,, for { = 2R.

increases (17, 13) and hence the stress concentration at the two ends of the adhesive layer
(21, 22) also increases with the increasing value of &,

(4) In Volkersen~Adams’ analysis (1965h, 1977¢), the stress components t,4;, 7,41
existing in the two adherends are disregarded. This is equivalent to neglecting the con-
tribution of 1,5, and 1,4, to the complementary encrgy expressions (11a) and (11b), and
hence results in the change of the first cocflicient in the governing eqn (15) from
[A,+ (x,/2:) A+ A;] to A,. Obviously, this negligence can only be justified with the pre-

condition
a \
[A|+ (;") Az] « A} (23)

and referring to the definitions for 4,, A, and A, (13), it is scen that this pre-condition
actually means that the adhesive layer of the joint must be rather “'soft” (G, « G|, G,) when
compared with the two adherends. Thus, the validity of Volkersen-Adams' analysis (1965i,
1977f) is limited to the case of the “soft” adhesive layer.

According to Volkersen-Adams™ analysis (1965, 1977g), the above mentioned index
of the stress concentration in the end zones of the adhesive layer becomes

o2 ¥

As

k* =

Undoubtedly, the index may always give a higher estimation of the stress concentration
than what is predicted by the present analysis, and for a joint with a “*stiffi”” adhesive layer,
the difference between k and k* may be significant.

For example, taking po = 0. p, = 0.60, p. = 0.62. G;/G, = G,/G, = 0.045 (epoxy/
aluminum) we have
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A, =219%10"°% A,=959x10"%, A4,=926x10"73,
B, =146x1073 B,=9.59x10"73,
x, = 0.13, x, = 0.85,

hence 4, + (a,/2:)°4; = 4.43x 10" % and k = 3.50, k* = 4.26.

The value of k* is twenty per cent higher than that of k. This example illustrates the
earlier statement that when the condition (23) is not satisfied as in this example, the
difference between the two indices k and k* can be significant. Using the preceding data,
from eqns (8). (16) and (4a) we obtain

93 0.09K[C, e K — C, e K9] (25)

To
in which

Ci=(1—e %)~ "[7.716=7.643 x 10~ *(1 —e~*)]
Cy=(l—e *) '[=7.716 e ¥ —7.643 x 10~ (1 —e~*)].

The distributions of t,.y from { =0to { = 4 for A =0.5, | and 2 are shown in Figs 3, 4
and 5. In each figure. two curves for k = 3.5 and k* = 4.26 are plotted. These figures show
that the values of 1,41/t for k* = 4.26 arc 18-20% higher than that for & = 3.5. Hence the
difference between the two scts of solutions of t,4,/t, for kK = 3.5 and &* = 4.26 can be
significant.
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